
Room C | 09/20/2010 – 16:00 – 17:20

Samuel Gateau, NVIDIA, Steve Nash, NVIDIA

Implementing Stereoscopic 3D in Your
Applications

Agenda

 How It Works

 NVIDIA 3D Vision

 Implementation Example

 Stereoscopic Basics

 Depth Perception

 Parallax Budget

 Rendering in Stereo

What‘s Next?

3D vs Stereo

 ―In 3D‖ is the new ―Stereo‖

— They are used interchangeably, stereoscopic rendering is the

technical means to make an image ―In 3D‖

 Each eye gets its own view rendered with a slightly

different camera location: usually about as far apart as your

eyes

 Stereo displays and APIs are used to manage these two

views
Stereo

Not StereoStereo

Applications render a Left Eye view and Right
Eye view with slight offset between

Left Eye view Right Eye view

A Stereoscopic display then shows the left eye view
for even frames (0, 2, 4, etc) and the right eye view
for odd frames (1, 3, 5, etc).

Stereoscopic Basics

How It Works

In this example active shutter glasses black-out the
right lens when the left eye view is shown on the
display and black-out the left lens when the right eye
view is shown on the display.

This means that the refresh rate of the display is
effectively cut in half for each eye. (e.g. a display
running at 120 Hz is 60 Hz per eye)

The resulting image for the end user is a combined
image that appears to have depth in front of and
behind the stereoscopic 3D Display.

Left eye view on, right
lens blocked

Right eye view on, left
lens blocked

off onon off

Left lens Right lens Left lens Right lens

Stereoscopic Basics

How It Works

NVIDIA 3D Vision

Hardware

IR communication

3D Vision certified displays

Support for single screen or 1x3

configurations

Software

3D Vision SW automatically converts mono

games to Stereo

Direct X only

NVIDIA 3D Vision Pro

Hardware

RF communication

3D Vision certified displays, Passive

Displays, CRTs and projectors

Up to 8 displays

Mix Stereo and Regular Displays

G-Sync support for multiple displays and

systems

Direct connection to GPU mini-DIN

Software

Supports Consumer 3D Vision SW or Quad

Buffered Stereo

QBS: OpenGL or DirectX
For DX QBS, e-mail

3DVisionPro_apps@nvidia.com for help

mailto:3DVisionPro_apps@nvidia.com

NVIDIA 3D Vision Pro

Hardware – cont’d

Designed for multi-user professional

installations

No line of sight requirement, no dead

spots, no cross talk

RF bi-directional communication with UI

50m range

Easily deploy in office no matter what the

floor plan

Implementation Example

Implementation Example: OpenGL
Step 1: Configure for Stereo

iPixelFormat = DescribePixelFormat(hdc, 1,

sizeof(PIXELFORMATDESCRIPTOR), &pfd);

while (iPixelFormat) {

DescribePixelFormat(hdc, iPixelFormat,

sizeof(PIXELFORMATDESCRIPTOR), &pfd);

if (pfd.dwFlags & PFD_STEREO){

iStereoPixelFormats++;

}

iPixelFormat--;

}

if (iStereoPixelFormats== 0)

// no stereo pixel formats available

StereoIsAvailable = FALSE;

else

StereoIsAvailable = TRUE;

Implementation Example: OpenGL
Step 2: Query and request PFD_STEREO

if (StereoIsAvailable){

ZeroMemory(&pfd, sizeof(PIXELFORMATDESCRIPTOR));

pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);

pfd.nVersion = 1;

pfd.dwFlags = PFD_DRAW_TO_WINDOW |

PFD_SUPPORT_OPENGL |

PFD_DOUBLEBUFFER |

PFD_STEREO;

pfd.iPixelType = PFD_TYPE_RGBA;

pfd.cColorBits = 24;

iPixelFormat = ChoosePixelFormat(hdc, &pfd);

if (iPixelFormat != 0){

if (SetPixelFormat(hdc, iPixelFormat, &pfd)){

hglrc = wglCreateContext(hdc);

if (hglrc != NULL){

if (wglMakeCurrent(hdc, hglrc)){

…

Implementation Example: OpenGL
Step 2 cont’d

// Select back left buffer

glDrawBuffer(GL_BACK_LEFT);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Setup the frustum for the left eye

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glFrustum(Xmin - FrustumAssymmetry,

Xmax – FrustumAssymmetry,

-0.75, 0.75, 0.65, 4.0);

glTranslatef(eyeOffset, 0.0f, 0.0f);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

<Rendering calls>

Implementation Example: OpenGL
Step 3: Render to Left/Right buffer with offset between

// Select back right buffer

glDrawBuffer(GL_BACK_RIGHT);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Setup the frustum for the right eye.

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glFrustum(Xmin + FrustumAssymmetry,

Xmax + FrustumAssymmetry,

-0.75, 0.75, 0.65, 4.0);

glTranslatef(-eyeOffset, 0.0f, 0.0f);

glTranslatef(0.0f, 0.0f, -PULL_BACK);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

<Rendering calls>

// Swaps both left and right buffers

SwapBuffers(hdc);

Implementation Example: OpenGL
Step 3 cont’d

FROM MONO TO STEREO

Changes to the rendering pipe

In Mono

Eye space

ZY

X

Near plane

Scene is viewed from one eye

and projected with a perspective

projection along eye direction on

Near plane in Viewport
Mono Frustum

Scene

Viewport

In Stereo

Eye space

ZY

X

Scene

Near plane

In Stereo:

Two eyes

Eye space

ZY

X

Left and Right eyes
Shifting the mono eye along

the X axis

Scene

Near plane

In Stereo:

Two eyes

Eye space

ZY

X

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

Scene

Near plane

Virtual Screen

In Stereo: Two Eyes,

One Screen

Eye space

ZY

X

One “virtual” screen

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

Scene

Near plane

Scene

In Stereo: Two Eyes,

One Screen

Virtual Screen

Eye space

ZY

X

Left Frustum Right Frustum

One “virtual” screen
Where the left and right

frustums converge

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

Near plane

In Stereo: Two Eyes, One Screen,

Two Images

Virtual Screen

Eye space

ZY

X

Two images
2 images are generated at

the near plane in each views

Scene

Left
Image

Right
Image

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

One “virtual” screen
Where the left and right

frustums converge

Near plane

In Stereo: Two Eyes, One Screen,

Two Images

Virtual Screen

Eye space

ZY

X

Scene

Left
Image

Right
Image

Left Image Right Image

Real Screen

Near plane

Two images
2 images are generated at

the near plane in each views

Presented independently to

each eyes of the user on the

real screen

Stereoscopic Rendering

Render geometry twice

From left and right eyes

Into left and right images

DEFINING STEREO PROJECTION

Basic definitions so we all speak English

Stereo Projection

 Stereo projection matrix is a horizontally offset version of regular mono projection

matrix

— Offset Left / Right eyes along X axis

Z

Y

X

Eye space
Left Eye

Right Eye

Mono Eye

Screen

Mono Frustum

Stereo Projection

 Projection Direction is parallel to mono direction (NOT toed in)

 Left and Right frustums converge at virtual screen

Left Eye

Right Eye

Mono Eye

Left Frustum

Right Frustum

Virtual
Screen

Z

Y

X

Eye space

Interaxial

 Distance between the 2 virtual eyes in eye space

 The mono, left & right eyes directions are all parallels

Z

Y

X

Eye space
Left Eye

Right Eye

Mono Eye Interaxial

Separation

 The normalized version of interaxial by the virtual screen width

 More details in a few slides….

Separation = Interaxial / Screen Width

Screen width
Z

Y

X

Eye space
Left Eye

Right Eye

Mono Eye Interaxial

Virtual
Screen

Convergence

 Virtual Screen‗s depth in eye space (―Screen Depth‖)

 Plane where Left and Right Frustums intersect

Convergence

Z

Y

X

Eye space
Left Eye

Right Eye

Mono Eye

Left Frustum

Right Frustum

Virtual
Screen

Parallax

 Signed Distance on the virtual screen between the projected

positions of one vertex in left and right image

 Parallax is function of the depth of the vertex

Z

Y

X

Eye space
Left Eye

Right Eye

Mono Eye

Virtual
Screen

Parallax

Vertex depth

Convergence

In
te

ra
xi

al

DEPTH PERCEPTION

Where the magic happens and more equations

Virtual vs. Real Screen

Virtual Screen

Virtual Space

ZY

X

Scene

Parallax creates the depth

perception for the user

looking at the real screen

presenting left and right

images

The virtual screen is

perceived AS the real screenLeft Image Right Image

Real Screen

In / Out of the Screen

Z

Y

X

Eye space

Left Eye

Right Eye

Mono Eye

ScreenOut of the Screen In the Screen

Convergence

Vertex Depth Parallax Vertex Appears

Further than Convergence Positive In the Screen

Vertex Depth Parallax Vertex Appears

Further than Convergence Positive In the Screen

Equal Convergence Zero At the Screen

Vertex Depth Parallax Vertex Appears

Further than Convergence Positive In the Screen

Equal Convergence Zero At the Screen

Closer than Convergence Negative Out of the Screen

Parallax in normalized image space

Pa
ra

lla
x

in
 n

o
rm

al
iz

ed
 im

ag
e

sp
ac

e

Vertex Depth (W)

Separation

C
o

n
ve

rg
en

ce

Parallax diverges quickly to negative infinity
for object closer to the eye

Parallax is 0 at screen depth

Maximum Parallax at infinity is
separation  distance between the eyes

Parallax = Separation * (1 – Convergence / W)

Eye Separation

 Interocular (distance between the eyes) is on

average 2.5‖  6.5 cm

 Equivalent to the visible parallax on screen for

objects at infinity

 Depending on the screen width, we define a

normalized ―Eye Separation‖

 Different for each screen model

 A reference maximum value for

the Separation used in the stereo

projection for a comfortable experience

Real Screen

Screen Width

Interocular

Parallax at infinity

Eye Separation = Interocular / Real Screen Width

Separation should be Comfortable

 The maximum parallax at infinity is

Separation

 Eye Separation is an average, should be

used as the very maximum Separation

value

 Never make the viewer look diverge

 People don‘t have the same eyes

 For Interactive application, let the user

adjust Separation

 When the screen is close to the user (PC

scenario) most of the users cannot handle

more than 50% of the Eye Separation

Real Screen

Eye Separation is the Maximum Comfort
Separation

Real ScreenReal Screen

Safe Parallax Range

P
a
ra

lla
x

Depth

Separation 1

C
o

n
ve

rg
en

ce

Separation 2

Eye Separation

-Eye Separation

PARALLAX BUDGET

Nearest
pixel

Farthest
pixel

Parallax
budget

P
a
ra

lla
x

Depth

Separation
C

o
n

ve
rg

en
ce

Parallax Budget
How much parallax variation is used in the frame

In Screen : Farthest Pixel

 At 100 * Convergence, Parallax is 99% of the Separation

 For pixels further than 100 * Convergence,

Elements looks flat on the far distance with no depth differentiation

 Between 10 to 100 * Convergence, Parallax vary of only 9%

 Objects in that range have a subtle depth differentiation

P
a
ra

lla
x

Depth

Separation

C
o

n
ve

rg
en

ce

Out of the Screen : Nearest pixel

 At Convergence / 2, Parallax is equal to -Separation, out of the screen

 Parallax is very large (> Separation) and can cause eye strains

P
a
ra

lla
x

Depth

Separation
C

o
n

ve
rg

en
ce

Convergence sets the scene in the screen

Defines the window into the virtual space

Defines the style of stereo effect achieved (in / out of the screen)

P
a
ra

lla
x

Depth

Separation

C
o

n
ve

rg
en

ce
 1

Far pixelNear pixel

C
o

n
ve

rg
en

ce
 2

Parallax
budget 1

Parallax
budget 2

Separation scales the parallax budget

Scales the depth perception of the frame
P

a
ra

lla
x

Depth

Separation 1

C
o

n
ve

rg
en

ce

Separation 2

Parallax
budget 1

Far pixelNear pixel

Parallax
budget 2

Adjust Convergence

 Convergence must be controlled by the application

 Camera parameter driven by the look of the frame

 Artistic / Gameplay decision

 Should adjust for each camera shot / mode

 Make sure the scene elements are in the range [Convergence / 2, 100 * Convergence]

 Adjust it to use the Parallax Budget properly

 Cf Bob Whitehill Talk (Pixar Stereographer) at Siggraph 2010

 Dynamic Convergence is a bad idea

 Except for specific transition cases

 Analyze frame depth through an Histogram and focus points ?

 Ongoing projects at NV

RENDERING IN STEREO

Let‘s do it

Stereoscopic Rendering

Render geometry twice Do stereo drawcalls Duplicate drawcalls

From left and right eyes Apply stereo projection Modify projection matrix

Into left and right images Use stereo surfaces Duplicate render surfaces

How to implement stereo projection ?

 Fully defined by mono projection and Separation & Convergence

 Replace the perspective projection matrix by an offset perspective projection

 horizontal offset of Interaxial

 Negative for Right eye

 Positive for Left eye

 Or just before rasterization in the vertex shader, offset the clip position by

the parallax amount (Nvidia 3D vision driver solution)

clipPos.x += EyeSign * Separation * (clipPos.w – Convergence)

EyeSign = +1 for right, -1 for left

Stereo Transformation Pipeline

Pixel

Shader

RasterizationVertex Shader

World

space

Eye

space

Clip

space

Normalized

space

Image

space

View

Transform

Projection

Transform

Perspective

Divide

Viewport

Transform

Standard Mono

Pixel

Shader

RasterizationVertex Shader

Clip

space

Stereo Clip

space

Stereo

Normalized

space

Stereo

Image

space

Stereo

Separation

Perspective

Divide

Viewport

Transform
…Eye

space

Projection

Transform
…

Stereo Projection Matrix

Pixel

Shader

RasterizationVertex Shader

Eye

Space

Stereo Clip

space

Stereo

Normalized

space

Stereo

Image

space

Stereo

Projection

Transform

Perspective

Divide

Viewport

Transform
……

Stereo Separation on clip position

Screen
Left Image

Right Image

Stereo rendering surfaces

 View dependent render targets must be duplicated

 Back buffer

 Depth Stencil buffer

 Intermediate full screen render targets used to process final image

 High dynamic range, Blur, Bloom

 Screen Space Ambient Occlusion

Right Image
Left Image

Mono rendering surfaces

 View independent render targets DON‘T need to be

duplicated

 Shadow map

 Spot light maps projected in the scene

Screen

How to do the stereo drawcalls ?

 Simply draw the geometries twice, in left and right versions of stereo surfaces

 Can be executed per scene pass

 Draw left frame completely

 Then Draw right frame completely

 Need to modify the rendering loop

 Or for each individual objects

 Bind Left Render target, Setup state for left projection, Draw geometry

 Bind Right render target, Setup state for right projection, Draw Geometry

 Might be less intrusive in an engine

 Not everything in the scene needs to be drawn

 Just depends on the render target type

When to do what?

Use Case
Render Target

Type
Stereo Projection Stereo Drawcalls

Shadow maps Mono
No

Use Shadow projection
Draw Once

Main frame

Any Forward rendering pass
Stereo Yes Draw Twice

Reflection maps Stereo

Yes

Generate a stereo

reflection projection

Draw Twice

Post processing effect

(Drawing a full screen quad)
Stereo

No

No Projection needed at all
Draw Twice

Deferred shading lighting

pass

(Drawing a full screen quad)

Stereo

G-buffers

Yes

Be careful of the

Unprojection

Should be stereo

Draw twice

EVERYTHING IS UNDER CONTROL

What could go possibly wrong ?

3D Objects

 All the 3D objects in the scene should be rendered using a unique

Perspective Projection in a given frame

 All the 3D objects must have a coherent depth relative to the

scene

 Lighting effects are visible in 3D so should be computed correctly

 Highlight and specular are probably best looking evaluated with mono eye

origin

 Reflection and Refraction should be evaluated with stereo eyes

Pseudo 3D objects : Sky box, Billboards…

 Sky box should be drawn with a valid depth further than the

regular scene

 Must be Stereo Projected

 Best is at a very Far distance so Parallax is maximum

 And cover the full screen

 Billboard elements (Particles, leaves) should be rendered in a

plane parallel to the viewing plane

 Doesn‘t look perfect

 Relief mapping looks bad

Several 3D scenes

 Different 3D scenes rendered in the same frame using different

scales

 Portrait viewport of selected character

 Split screen

 Since scale of the scene is different, Must use a different

Convergence to render each scene

Out of the screen objects

 The user‘s brain is fighting against the perception of hovering

objects out of the screen

 Extra care must be taken to achieve a convincing effect

 Objects should not be clipped by the edges of the window

 Be aware of the extra horizontal guard bands

 Move object slowly from inside the screen to the outside area to

give eyes time to adapt

 Make smooth visibility transitions

 No blinking

 Realistic rendering helps

2D Objects 2D object in depth
attached to 3D anchor point

Starcraft2 screenshot , Courtesy of Blizzard

2D object in depth
attached to 3D anchor
point

Billboards in depth
Particles with 3D positions

2D Objects must be drawn at a valid Depth

 With no stereo projection

 Head Up Display interface

 UI elements

 Either draw with no stereo projection or with stereo projection at Convergence

 At the correct depth when interacting with the 3D scene

 Labels or billboards in the scene

 Must be drawn with stereo projection

 Use the depth of the 3D anchor point used to define the position in 2D window

space

 Needs to modify the 2D ortho projection to take into account Stereo

2D to 3D conversion
shader function

float4 2Dto3DclipPosition(

in float2 posClip : POSITION, // Input position in clip space

uniform float depth // Depth where to draw the 2D object

) : POSITION // Output the position in clip space

{

return float4(

posClip.xy * depth, // Simply scale the posClip by the depth

// to compensate for the division by W

// performed before rasterization

0, // Z is not used if the depth buffer is not used

// If needed Z = (depth * f – nf)/(f – n);

// (For DirectX)

depth); // W is the Z in eye space

}

Selection, Pointing in S3D

 Selection or pointing UI interacting with the 3D scene don‘t work if drawn

mono

 Mouse Cursor at the pointed object‘s depth

Can not use the HW cursor

 Crosshair

 Needs to modify the projection to take into account depth of pointed

elements

 Draw the UI as a 2D element in depth at the depth of the scene where pointed

 Compute the depth from the Graphics Engine or eval on the fly from the depth

buffer (Contact me for more info)

 Selection Rectangle is not perfect, could be improved

3D Objects Culling

When culling is done against the mono frustum…

Z

Y

X

Eye space
Left Eye

Right Eye

Mono Eye

Screen Left Frustum

Right Frustum

Mono Frustum

3D Objects Culling

… Some in screen regions are missing in the right and left frustum …

They should be visible

Z

Y

X

Eye space
Left Eye

Right Eye

Mono Eye

Screen Left Frustum

Right Frustum

Mono Frustum

3D Objects Culling

… And we don‘t want to see out of the screen objects only in one eye …

It disturbs the stereo perception

Z

Y

X

Eye space
Left Eye

Right Eye

Mono Eye

Screen Left Frustum

Right Frustum

Mono Frustum

3D Objects Culling

Here is the frustum we want to use for culling

Z

Y

X

Eye space
Left Eye

Right Eye

Mono Eye

Screen Left Frustum

Right Frustum

Mono Frustum

Z

Y

X

Eye space
Left Eye

Right Eye

Mono Eye

Screen Left Frustum

Right Frustum

Mono Frustum

3D Objects Culling
Computing Stereo Frustum origin offset

Z = Convergence / (1 + 1 / Separation)

Z

Interaxial

Convergence

Screen Width

3D Objects Culling

 Culling this area is not always a good idea

 Blacking out pixels in this area is better

 Through a shader

 Equivalent to the ―Floating window‖ used

in movies

Left Eye

Right Eye

Mono Eye

Screen Left Frustum

Right Frustum

Mono Frustum

Fetching Stereo Render Target

 When fetching from a stereo render target use the good texture coordinate

 Render target is addressed in STEREO IMAGE SPACE

 Use the pixel position provided in the pixel shader

 Or use a texture coordinate computed in the vertex shader correctly

Pixel Shader

…
Stereo Image

Space
POSITION.xy

Fetch Texel
at

POSITION.xy

Do something
with it

Stereo Render
Target

Pixel Shader

…
Mono Image

Space
uv

Fetch Texel
at
uv

Do something
with it

Stereo Render
Target

Unprojection in pixel shader
 When doing deferred shading technique, Pixel shader fetch the depth buffer

(beware of the texcoord used, cf previous slide)

 And evaluate a 3D clip position from the Depth fetched and XY viewport position

 Make sure to use a Stereo Unprojection Inverse transformation to go to Mono Eye

space

 Otherwise you will be in a Stereo Eye Space !

Pixel Shader

Stereo Image
Space

POSITION.xy

Image
space

Normalized
space

Clip
space

Mono Eye
space

Fetch Depth
at

POSITION.xy

Viewport
Inverse

Transform

Perspective
Multiply

Stereo
Projection

Inverse
Transform

Evaluate
Image Space

Position

Stereo
Depth Buffer

Pixel Shader

Stereo Image
Space

POSITION.xy

Image
space

Normalized
space

Clip
space

Stereo Eye
space

Fetch Depth
at

POSITION.xy

Viewport
Inverse

Transform

Perspective
Multiply

Mono
Projection

Inverse
Transform

Evaluate
Image Space

Position

Stereo
Depth Buffer

WHAT’S NEXT ?

One or two things to look at

Performance considerations

 At worse the frame rate is divided by 2

 But applications are rarely GPU bound so less expensive in practice

 Since using Vsynch when running in stereo, you see the standard Vsync frequence

jumps

 Not all the rendering is executed twice (Shadow maps)

 Memory is allocated twice for all the stereo surfaces

 Try to reuse render targets when possible to save memory

 Get another GPU 

Tessellation

Works great with stereoscopy

 Unigine Demo

Letterbox

 Emphasize the out of the screen effect

 Simply Draw 2 extra horizontal bands at Convergence

 Out of the screen objects can overdraw the bands

G-Force movie

from Walt DIsney

SHOW TIME

Nvidia Demo Sled

